Abstract Submitted for the MAR15 Meeting of The American Physical Society

Superconductivity enhanced by Se-doping in Eu₃Bi₂S₄F₄ PAN ZHANG, HUI-FEI ZHAI, GUANGHAN CAO, ZHUAN XU, Department of Physics, Zhejiang University — We investigated the negative chemical pressure effect of Eu₃Bi₂S₄F₄ by partially substituting S with Se. The "parent" compound Eu₃Bi₂S₄F₄ is a new member of the BiS₂-based superconductors. [H.F. Zhai et al., J. Am. Chem. Soc. 136, 15386–15393, (2014)] It shows anomalous Eu valence and superconductivity of $T_c = 1.5$ K without chemical doping. With S/Se-doping, we found that a CDW-like anomaly is gradually suppressed to lower temperatures, and meanwhile the superconductivity (SC) is enhanced. For Eu₃Bi₂S₂Se₂F₄, T_c reaches 3.4 K. Magnetization measurements reveal an average Eu valence of ~ 2.06, which means that Se doping does not introduce extra electrons but instead, lowers down to a low electron doping level of $x \sim 0.1$. Therefore, the present system manifested itself as a rare example of existence of SC at very low doping levels.

Pan Zhang Zhejiang Univ

Date submitted: 14 Nov 2014

Electronic form version 1.4