Design of I_2-II-IV-VI_4 Semiconductors through Element-substitution: the Thermodynamic Stability Limit and Chemical Trend

SHIYOU CHEN, East China Normal University, CONGCONG WANG, Fudan University, HONGJUN XIANG, XIN-GAO GONG, Fudan University, ARON WALSH, University of Bath, SU-HUAI WEI, National Renewable Energy Laboratory — Through element substitution in kesterite Cu_2ZnSnS_4 or $Cu_2ZnSnSe_4$, a class of I_2-II-IV-VI_4 semiconductors can be designed as novel functional materials. Using the first-principles calculations, we show that this element-substitution design is thermodynamically limited, i.e., although I_2-II-IV-VI_4 with $I=$Cu, Ag, $II=$Zn, Cd, Hg, $IV=$Si, Ge, Sn and $VI=$S, Se, Te are stable quaternary compounds, those with $II=$Mg, Ca, Sr, Ba, $IV=$Ti, Zr, Hf, and $VI=$O are unstable against the phase-separation into the competing binary and ternary compounds. Three main phase-separation pathways are revealed. In general, we show that if the secondary II-VI or I_2-IV-VI_3 phases prefer to have non-tetrahedral structures, then the I_2-II-IV-VI_4 semiconductors tend to phase separate. This finding can be used as a guideline for future design of new quaternary semiconductors.

Shiyou Chen
East China Normal University

Date submitted: 14 Nov 2014

Electronic form version 1.4