Abstract Submitted for the MAR15 Meeting of The American Physical Society

Single vortex pinning and penetration depth in superconducting NdFeAsO_{1-x}F_x JESSIE T. ZHANG, Massachusetts Institute of Technology, JEEHOON KIM, MAGDALENA HUEFNER, Harvard University, CUN YE, Tsinghua University, STELLA KIM, PAUL CANFIELD, RUSLAN PROZOROV, Iowa State University, OPHIR M. AUSLAENDER, Technion - Israel Institute of Technology, JENNIFER E. HOFFMAN, Harvard University — We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO_{1-x}F_x, one of the highest- T_c iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. By manipulating the vortices using the MFM tip, we obtain single vortex depinning forces for vortices in NdFeAsO_{1-x}F_x. Moreover, our MFM measurements allow the first local and absolute measurement of the superconducting penetration depth in NdFeAsO_{1-x}F_x to nanometer scale resolution.

Jessie T Zhang Massachusetts Inst of Tech-MIT

Date submitted: 14 Nov 2014 Electronic form version 1.4