Generation of multi-qubit entanglement in a superconducting quantum circuit by parallelized parity measurements1 STEFANO POLETTO2, DIEGO RISTE', MENG-ZI HUANG3, ALESSANDRO BRUNO, VISA VESTERINEN4, OLLI-PENTTI SAIRA5, LEONARDO DICARLO, QuTech and Kavli Institute of Nanoscience — We present the generation of multi-qubit entanglement using parallelized ancilla-based parity measurements in a five qubit superconducting processor. Two-qubit Bell states and three-qubit GHZ-type states are generated by single and double two-qubit parity measurements on superposition states, respectively, and characterized by both witnessing and state tomography. The protocol for generation of GHZ-type states can be used as the encoding step in the three-qubit bit-flip quantum error correction code, and made deterministic by digital feedback control. We assess its performance by state tomography of the six encoded cardinal states, and compare to the traditional method of encoding by gates.

1We acknowledge funding from NWO, FOM and EU FP7 project ScaleQIT
2Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
3and Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics
4Present address: VTT Technical Research Centre of Finland
5Present address: Low Temperature Laboratory (OVLL) Aalto University, Finland

Stefano Poletto
QuTech and Kavli Institute of Nanoscience

Date submitted: 14 Nov 2014

Electronic form version 1.4