Suppression of Phase Separation and Enhanced Superconducting Transition Temperature of FeSe$_{1-x}$Te$_x$ Thin Films

FUYUKI NABESHIMA, YUICHI SAWADA, YOSHINORI IMAI, ATSUTAKA MAEDA, The University of Tokyo — To clarify the mechanism of superconductivity of Fe-based superconductors, it is crucial to investigate superconductivity of FeSe$_{1-x}$Te$_x$, which has the simplest crystal structure. There is, however, a serious obstacle to the understanding of its superconductivity: phase separation by spinodal decomposition occurs in the region of $0.1 < x < 0.4$ and thus a whole phase diagram has not been available. A useful method to fabricate metastable materials is thin-film deposition because of its thermodynamically non-equilibrium growth. In the presentation we will report the first demonstration of the suppression of the phase separation of FeSe$_{1-x}$Te$_x$ thin films on CaF$_2$ substrates[1]. Surprisingly the optimal composition to achieve the highest superconducting transition temperature, T_c, was found in this phase separation region; T_{c}^{onset} reaches \sim23 K. A whole phase diagram we will present provides a new perspective for the superconductivity of this material. [1] F. Nabeshima et al., Appl. Phys. Lett. 103 (2013) 172602.

1Partially supported by Strategic International Collaborative Research Program (SICORP) of Japan Science and Technology Agency.

Fuyuki Nabeshima
The University of Tokyo

Date submitted: 14 Nov 2014

Electronic form version 1.4