Abstract Submitted for the MAR15 Meeting of The American Physical Society

Large Thermopower of δ -doped LaTiO₃/SrTiO₃ Interfaces and it's Field Dependence¹ R.C. BUDHANI, Indian Institute of Technology, Kanpur & National Physical Laboratory, New Delhi, SHUBHANKAR DAS, P.C. JOSHI, A. RASTOGI, Z. HOSSAIN, Indian Institute of Technology, Kanpur — We will present the magneto-thermopower (S(T, H)) of interfacial delta doped LaTiO₃/SrTiO₃ heterostructure by an iso-structural antiferromagnetic perovskite LaCrO₃. The thermoelectric power of 2-dimensional electron gas (2DEG) of pure $LaTiO_3/SrTiO_3$ at 300 K is $\approx 118 \ \mu V/K$, but increases dramatically to 337 $\ \mu V/K$ on inserting 5 uc $LaCrO_3$ at the interface. The negative sign of the thermoelectric power confirms the electron as major carriers in these interfaces. A linear temperature dependence of S(T) has been observed in the temperature range 100 K to 300 K which is in agreement with the theory of diffusion thermopower of 2DEG. The S(T) shows a distinct enhancement at temperature <100 K, where a Kondo-type minimum has been observed in sheet resistance. We attribute this maximum in S(T) to Kondo scattering of conduction electron by localized impurity spin at the interface. The S in this temperature range is suppressed significantly ($\leq 20\%$) by moderate magnetic field (≤ 13 T) applied either perpendicular or parallel to the film surface. The isotropic nature of the suppression of S by magnetic field further strengthen the Kondo based interpretation of S(T, H).

¹We acknowledge IIT Kanpur and CSIR India for funding this research work.

Shubhankar Das Indian Institute of Technology, Kanpur

Date submitted: 14 Nov 2014

Electronic form version 1.4