Observations of superlattice Dirac points in one-dimensionally-rippled graphene on hexagonal BN using scanning tunneling spectroscopy

WON-JUN JANG, MIN WOOK LEE, SOON-IIYEONG LEE, Department of Physics, Korea University, MIN WANG, SUNG KYU JANG, MINWOO KIM, SUNGJOO LEE, SANG-WOO KIM, YOUNG JAE SONG, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), SE-JONG KAHNG, Department of Physics, Korea University — It has been predicted that superlattice potentials in graphene would induce new Dirac points due to lattice-induced chirality of charge carriers. In this talk, we present our experimental observations of new Dirac points in one-dimensionally-rippled graphene on hexagonal BN using scanning tunneling microscopy and spectroscopy. The ripples, formed by thermal cycles, showed two new Dirac points of which energy levels were proportional to $1/L$, where L was the period of a ripple, in agreement with theoretical predictions. Our study shows that one-dimensional periodic potential is an accessible component for controlling electronic properties of graphene.

Se-Jong Kahng
Department of Physics, Korea University

Date submitted: 14 Nov 2014

Electronic form version 1.4