Scanning Tunneling Microscopy Studies of the Topological Insulator Candidate YbB$_6$1 ZHIHUAI ZHU, Y. HE, Department of Physics, Harvard University, Cambridge, MA 02138, USA, D.-J. KIM, Z. FISK, Department of Physics and Astronomy, University of California, Irvine, California 92697, USA, J. E. HOFFMAN, Department of Physics, Harvard University, Cambridge, MA 02138, USA — We report scanning tunneling microscopy studies of YbB$_6$, a proposed topological insulator candidate with moderate correlation. The in-situ cleaved sample surface has two dominant morphologies: atomic square lattices and disordered rows, which likely correspond to Yb and B terminations, respectively. Spatially resolved dI/dV maps show enhanced tunneling due to the local perturbation of the tip-induced band bending. The dI/dV spectra reveal a bulk gap with distinct in-gap features near the Fermi level on different terminations. Our study presents nanoscale evidence for the interplay between surface structure, correlation and topological properties.

1The work at Harvard was supported by NSF-DMR-1410480 and NSERC (ZHZ).