Top gating control of superconductivity at the LaAlO3/SrTiO3 interfaces

ALEXIS JOUAN, SIMON HURAND, CHERYL FEUILLET-PALMA, GYANENDRA SINGH, JEROME LESUEUR, NICOLAS BERGEAL, Laboratoire de Physique et d’Etude des Matériaux - CNRS - ESPCI ParisTech - UPMC, EDOUARD LESNE, NICOLAS REYREN, Unite Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France — Transition metal oxides display a great variety of quantum electronic behaviors. Epitaxial interfaces involving such materials give a unique opportunity to engineer artificial materials where new electronic orders take place. It has been shown that a superconducting two-dimensional electron gas could form at the interface of two insulators such as LaAlO3 and SrTiO3 [1], or LaTiO3 and SrTiO3 [2]. An important feature of these interfaces lies in the possibility to control their electronic properties, including superconductivity and spin-orbit coupling (SOC) with field effect [3-5]. However, experiments have been performed almost exclusively with a metallic gate on the back of the sample. In this presentation, we will report on the realization of a top-gated LaAlO3/SrTiO3 device whose physical properties, including superconductivity and SOC, can be tuned over a wide range of electrostatic doping. In particular, we will present a phase diagram of the interface and compare the effect of the top-gate and back-gate. Finally, we will discuss the field-effect modulation of the Rashba spin-splitting energy extracted from the analysis of magneto-transport measurements. Our result paves the way for the realization of mesoscopic devices where both superconductivity and SOC can be tuned locally.

Alexis Jouan
Laboratoire de Physique et d’Etude des Matériaux - CNRS - ESPCI ParisTech - UPMC

Date submitted: 14 Nov 2014
Electronic form version 1.4