Abstract Submitted for the MAR15 Meeting of The American Physical Society

Does the 18-Electron Rule Apply to CrSi_{12} ?¹ MARISSA BADDICK ABREU, VIKAS CHAUHAN, ARTHUR REBER, SHIV KHANNA, Virginia Commonwealth University — Understanding the bonding between silicon and transition metals is valuable for devising strategies for incorporating magnetic species into silicon. CrSi_{12} is the standard example of a cluster whose apparent high stability has been explained by the 18-electron rule. We critically examine the bonding and nature of stability of CrSi_{12} and show that its electronic structure does not conform to the 18-electron rule. Through theoretical studies we find that CrSi_{12} has 16 effective valence electrons assigned to the Cr atom and an unoccupied $3d_z^2$ orbital. We demonstrate that the cluster's apparent stability is rooted in a crystal field-like splitting of the 3d orbitals analogous to that of square planar complexes. CrSi_{14} is shown to follow the 18-electron rule and exhibits all the conventional markers characteristic of a magic cluster. We will also present results on the stability and electronic structure of FeSi_n clusters and in particular examine the valence configuration of FeSi₁₂ since Fe has two additional valence electrons compared to Cr.

¹We acknowledge support from the Department of Energy (DOE) under Award Number DE-SC0006420.

Shiv Khanna Virginia Commonwealth University

Date submitted: 14 Nov 2014

Electronic form version 1.4