Abstract Submitted for the MAR15 Meeting of The American Physical Society

LaAlO₃/SrTiO₃ field-effect nanodevices using in-situ-grown Au top gates¹ YUN-YI PAI, MENGCHEN HUANG, Univ of Pittsburgh, HYUNG-WOO LEE, CHANG-BEOM EOM, Univ of Wisconsin-Madison, PATRICK IRVIN, JEREMY LEVY, Univ of Pittsburgh — Conductive-atomic force microscope (c-AFM) lithography can create a wide range of nanostructures based on the LaAlO₃/SrTiO₃ system, including field effect transistors², single-electron transistors³ and superconducting nanoelectronics⁴. However, the operating range of gated devices is often limited by tunneling through insulating barriers. Using in-situ Au deposited on top of LaAlO₃, we create vertical field-effect devices with significantly lower leakage due to the large bandgap of LaAlO₃. We describe the fabrication process for vertical field-effect nanodevices and show representative transport measurements both at room temperature and low temperatures.

Yun-Yi Pai Univ of Pittsburgh

Date submitted: 14 Nov 2014 Electronic form version 1.4

 $^{^1\}mathrm{We}$ gratefully acknowledge support for this work from NSF (DMR-1124131 and DMR-0704022 and DMR-1234096) and AFOSR (FA9550-10-1-0524 and FA9550-12-1-0342).

²C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science **323**, 1026 (2009).

 $^{^3{\}rm G.}$ L. Cheng, et al., Nature Nanotechnology 6, 343 (2011).

⁴J. P. Veazey, et al., Nanotechnology **24**, 375201 (2013).