Abstract Submitted for the MAR15 Meeting of The American Physical Society

Trigonal crystal field effect in spin-orbit Mott insulating Sr_3NiIrO_6 JUN OKAMOTO, WEN-BIN WU, HIROFUMI ISHII, KANG-LI YU, NOZOMU HIRAOKA, RU-PAN WANG, Natl Synchrotron Rad Res Ctr, DENG-MING JUO, National Chiao Tung University, JIUNN CHEN, National Pingtung University of Education, VIVEKA SINGH, GUANG-YU GUO, National Taiwan University, QINGHUI JIANG, Postech, SANG-WOOK CHEONG, Rutgers University, KU-DING TSUEI, DI-JING HUANG, Natl Synchrotron Rad Res Ctr — Sr_3NiIrO_6 is a member of 5d transition-metal Ir oxides with a long chain alternating Ni^{2+} in trigonal prismatic coordination and Ir^{4+} in octahedral coordination along c axis. Sr_3NiIrO_6 is considered to be a spin-orbit Mott insulator like Sr_2IrO_4 . Since the Ir 5d spin-orbit coupling (SOC) and crystal field (CF) effect in t_{2g} orbitals from trigonal distortion are comparable, however, competition between the SOC and CF effect makes the Ir 5d electronic structures different from the so-called $j_{eff} = 1/2$ ground state. The modified Ir 5d electronic structures under the trigonal crystal field effect are still unclear. We have studied the Ir 5d electronic structures of Sr_3NiIrO_6 by using Ir L_3 -edge resonant inelastic x-ray scattering and O K-edge xray absorption spectroscopy measurements. Through the analyses of the low-energy d-d excitations and the unoccupied Ir 5d states, we discuss the influence of the competition of SOC and CF effects on the Ir 5d electronic structures of Sr₃NiIrO₆.

> Jun Okamoto Natl Synchrotron Rad Res Ctr

Date submitted: 14 Nov 2014

Electronic form version 1.4