Abstract Submitted for the MAR15 Meeting of The American Physical Society

Two-dimensional Mineral [Pb2BiS3][AuTe2]: High mobility Charge Carriers in Single-atom-thick Layers¹ LEI FANG, Department of Chemisty, Northwestern University, J. IM, C. STOUMPOS, F. SHI, V. DRAVID, Northwestern University, M. LEROUX, Argonne National Laboratory, A. FREE-MAN, Northwestern University, W.-K. KWOK, D.-Y. CHUNG, Argonne National Laboratory, M. KANATZIDIS, Northwestern University — We report that [Pb2BiS3][AuTe2], known as a naturally occurring mineral buckhornite, hosts 2D carriers in single-atom-thick layers. The structure is composed of stacking layers of weakly coupled [Pb2BiS3] and [AuTe2] sheets. The insulating [Pb2BiS3] sheet inhibits interlayer charge hopping and confines the carriers in the basal plane of the single-atom-thick [AuTe2] layer. Magneto-transport measurements and theoretical calculations show a property of multiband semimetal with compensated density of electrons and holes, which exhibit high hole carrier mobility of 1360 cm²/Vs. This material possesses an extremely large anisotropy 10⁴, comparable to benchmark materials graphite. The electronic structure features linear band dispersion at the Fermi level and ultrahigh Fermi velocities of 10⁶ m/s which are virtually identical to that of graphene. The weak interlayer coupling gives rise to the highly cleavable property of single crystal specimens, indicating a prospect for monolayer system.

¹This research was supported by the DoE, BES, under Contract No. DE-AC02-06CH11357, and NUANCE Center at the Northwestern University

Lei Fang Department of Chemistry, Northwestern University

Date submitted: 14 Nov 2014 Electronic form version 1.4