Competing quantum Hall phases in the second Landau level in low density limit1 WEI PAN, Sandia National Labs, A. SERAFIN, J.S. XIA, L. YIN, N.S. SULLIVAN, University of Florida and NHMFL, K.W. BALDWIN, K.W. WEST, L.N. PFEIFFER, D.C. TSUI, Princeton University — We present here the results from two high quality, low density GaAs quantum wells. In sample A of electron density $n = 5.0 \times 10^{10}$ cm$^{-2}$, anisotropic electronic transport behavior was observed at $\nu = 7/2$ in the second Landau level. We believe that the anisotropy is due to the large Landau level mixing effect in this sample. In sample B of density 4.1×10^{10} cm$^{-2}$, strong $8/3$, $5/2$, and $7/3$ fractional quantum Hall states were observed. Furthermore, our energy gap data obtained in various samples of different densities suggest that the $5/2$ state may be spin unpolarized in the low density limit. The results from both samples show that the strong electron-electron interactions and a large Landau level mixing effect play an important role in the competing ground states in the second Landau level. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

1This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.