Abstract Submitted for the MAR15 Meeting of The American Physical Society

Charge Carrier Transport Properties in Layered Structure of Hexagonal Boron Nitride (h-BN) and Thermal Neutron Detection Based on h-BN TRI DOAN, SAMUEL GRENADIER, SASHIKHANTH MAJETY, JING LI, JINGYU LIN, HONGXING JIANG, Texas Tech Univ, NANOPHOTONICS CENTER - TEXAS TECH UNIVERSITY TEAM — Hexagonal boron nitride (h-BN) epilayers have been synthesized by MOCVD. It was found that the carrier mobility in h-BN epilayers is strongly dependent on temperature following the power ~ $T^{-\alpha}$ with $\alpha \approx 3.02$, satisfying the 2D carrier transport limit domilaw μ nated by the polar optical phonon scattering The deduced maximum energy (wave number) of the optical phonon is $\sim 192 \text{ meV}$ (or 1546 cm⁻¹). The measured carrier mobility-lifetime ($\mu\tau$) product of h-BN thin films grown on sapphire substrate is $2.83 \times 10^{-7} \text{ cm}^2/\text{V}$ for electrons and holes, which is comparable to that of GaN films grown on sapphire. Thermal neutron detectors based on h-BN epilayers were fabricated and the reaction product pulse-height spectra were measured under thermal neutron irradiation produced by 252 Cf source. It was shown that h-BN thin film thermal neutron detectors are capable to resolve specific nuclear reaction products with unprecedentedly high energy resolution.

> Tri Doan Texas Tech Univ

Date submitted: 14 Nov 2014

Electronic form version 1.4