Dynamic force measurement of rearrangements in a 2D network of droplets

SOLOMON BARKLEY, MATILDA BACKHOLM, KARI DALNOKI-VERESS, McMaster University — The interaction between two liquid droplets in an immiscible liquid is well understood. However, the emulsions relevant to biological and industrial processes involve high concentrations of these droplets, and multi-body effects cannot be ignored. As droplets rearrange in response to a disturbance, the importance of individual pair-wise interactions between droplets changes with the geometry of neighbours. Here we report on an experimental setup consisting of a two-dimensional network of monodisperse droplets stabilized with a surfactant. The system is studied with micropipette deflection, which permits direct measurement of forces along with simultaneous imaging of the droplet network. One micropipette is used to apply a tensile or compressive force to the droplet cluster, while a second pipette acts as a force-transducing cantilever, deflecting in response to rearrangements of the droplets.