Abstract Submitted for the MAR15 Meeting of The American Physical Society

Single and Multi-Channel Carbon-based Quantum Dragons¹ GODFRED INKOOM, Mississippi State University, OMADILLO ABDURAZA-KOV, NCSU, MARK NOVOTNY, Mississippi State University — In the coherent regime for electrical conductance measurements, two semi-infinite leads are connected to a finite nanostructure, and the nano-device conductance is calculated using the Landauer formula. Any channel k that has transmission for electrons with energy E, $\mathcal{T}_k(E)=1$ contributes the conductance quantum $G_0=2e^2/h$. Any nanodevice with at least one $\mathcal{T}_k(E)=1$ is called a quantum dragon [1]. The transmission probability $\mathcal{T}_k(E)$ can be obtained from the solution of the time-independent Schrödinger equation. Uniform leads connected to armchair single-walled carbon nanotubes (SWCNTs) have $\mathcal{T}(E)=1$, while when connected to zigzag SWCNT the $\mathcal{T}(E)$ is less than unity. Appropriately dimerized leads connected to zigzag SWC-NTs are quantum dragons, while when connected to armchair SWCNTs $\mathcal{T}(E)$ is less than unity [1]. We have generalized the matrix method and mapping methods of [1] in order to investigate SWCNTs that can be multi-channel quantum dragons. For example, one can use armchair SWCNT leads to connect to an armchair SWCNT to try to produce a multi-channel quantum dragon.

[1] M.A. Novotny, Phys. Rev. B **90**, 165103 [14 pages] (2014).

¹Supported in part by NSF grant DMR-1206233

Godfred Inkoom Mississippi State University

Date submitted: 14 Nov 2014

Electronic form version 1.4