Multi-valley effective mass theory for device-level modeling of open quantum dynamics1 N. TOBIAS JACOBSON, ANDREW D. BACZEWSKI, Sandia National Labs, ADAM FREES, University of Wisconsin-Madison, Sandia National Labs, JOHN KING GAMBLE, INES MONTANO, JONATHAN E. MOUSSA, RICHARD P. MULLER, ERIK NIELSEN, Sandia National Labs — Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources.

1Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

N. Tobias Jacobson
Sandia National Labs

Date submitted: 14 Nov 2014

Electronic form version 1.4