Spontaneous currents in a superconductor with \(s+is \) symmetry
MANFRED SIGRIST, Institut fur Theoretische Physik, ETH Zurich, SAURABH MAITI, University of Florida and NHMFL, ANDREY CHUBUKOV, William I. Fine Theoretical Physics Institute, and School of Physics and Astronomy, University of Minnesota — We analyze \(s+is \) state proposed as a candidate superconducting state for strongly hole-doped Ba-122. Such a state breaks time-reversal symmetry (TRS) but does not break any other discrete symmetry. We address the issue whether TRS breaking alone can generate spontaneous currents near impurity sites, which could be detected in, e.g., \(\gamma \)SR experiments. We argue that there are no spontaneous currents if only TRS is broken. However, supercurrents do emerge if the system is put under external strain and C4 lattice rotation symmetry is externally broken.

Saurabh Maiti
University of Florida and NHMFL

Date submitted: 14 Nov 2014

Electronic form version 1.4