Electronic gap in SmB$_6$ studied by Raman spectroscopy1

MICHAEL VALENTINE, SEYED KOOHPAYEH, Johns Hopkins University, XIANGFENG WANG, YASUYUKI NAKAJIMA, JOHNPIERRE PAGLIONE, University of Maryland, COLLIN BROHOLM, WILLIAM PHELAN, TYREL MCQUEEN, NATALIA DRICHKO, Johns Hopkins University — SmB$_6$ is a mixed valence compound which is suggested to be a topological Kondo insulator. Studies of insulating vs metallic properties of the bulk and the nature of the surface conduction are still ongoing. Using Raman scattering, we follow the opening of an electronic gap in samples of pure SmB$_6$ and SmB$_6$ with Al and C impurities. In all of the samples we observe an electronic gap in the range of 50-65 meV, confirming insulating state in the bulk. The gap appears in the A$_{1g}$+E$_g$ spectra as a suppression of low-frequency electronic scattering and a shift of the spectral weight to frequencies above the gap below approximately 100 K. The size of the gap and presence of electronic states in the gap depend on the method of growth (floating zone vs Al flux), and the chemical composition of the sample. We discuss a dependence of these parameters on the impurities and Sm valence.

1Work at JHU was supported by the US Department of Energy, office of Basic Energy Sciences, Division of Material Sciences and Engineering under grant DE-FG02-08ER46544.