Abstract Submitted for the MAR15 Meeting of The American Physical Society

Thermoelectric effects in the field-suppressed superconducting state of quasi-one-dimensional $\text{Li}_{0.9}\text{Mo}_6\text{O}_{17}^{-1}$ JOSHUA L. COHN, University of Miami, CARLOS A.M. DOS SANTOS, Escola de Engenharia de Lorena - USP, Brazil, JOHN J. NEUMEIER, Montana State University — We present resistivity, thermopower (S), and Nernst (ν) measurements in the range 0.4 $K \leq T \leq 20$ K on single crystals of the quasi-one-dimensional (q1D) metal, $\text{Li}_{0.9}\text{Mo}_6\text{O}_{17}$ (LiPB) along the q1D metallic chains. The low-T limits of S/T and ν/T , determined in the magnetic-field suppressed superconducting state ($T_c = 2$ K), indicate a very small Fermi temperature ($T_F \sim 30$ K), contrary to expectations from prior work including photoemission. Possible insights from these results into the nature of the mysterious density-wave order^{2,3} responsible for the upturn in resistivity below ~ 25 K will be discussed.

¹Work supported by the U.S. Department of Energy Office of Basic Energy Sciences (DE-FG02-12ER46888, Univ. Miami), the National Science Foundation (DMR-0907036, Mont. St. Univ.), and in Lorena by the CNPq (308162/2013-7) and FAPESP (2009/54001-2).

²C. A. M. dos Santos *et al.*, Phys. Rev. Lett. **98**, 266405 (2007).

³X. Xu *et al.*, Phys. Rev. Lett. **102**, 206602 (2009).

Joshua Cohn University of Miami

Date submitted: 14 Nov 2014

Electronic form version 1.4