Abstract Submitted
for the MAR15 Meeting of
The American Physical Society

Experimentally tuning the ground state of BaFe$_2$As$_2$ by orbital differentiation1 PRISCILA ROSA, University of California at Irvine, CRIS ADRIANO, THALES GARITEZI, University of Campinas, TED GRANT, ZACHARY FISK, University of California at Irvine, RICARDO URBANO, PASCOAL PAGLIUSO, University of Campinas — The role of structural parameters in layered systems, such as iron pnictides/chalcogenides (Fe-Pn/Ch), cuprates and heavy fermions, has become crucial for the understanding of their properties. In this talk, I will discuss this subject using a combination of macroscopic and microscopic techniques to study Ba$_{1-x}$Eu$_x$Fe$_{2-y}$M$_y$As$_2$ single crystals (M = Co, Cu, Mn, Ni, and Ru). Interestingly, a close connection arises between the spin-density wave (SDW) phase suppression and local distortions in the structure. Furthermore, these changes are reflected at the Fermi surface by an increase of anisotropy and localization of the Fe 3d bands at the FeAs plane. Our results suggest that such increase in the planar (xy/x^2-y^2) orbital symmetry seems to be a favorable ingredient for the emergence of superconductivity in this class of materials.

1This work was supported by FAPESP, CNPq, CAPES-Brazi and AFOSR MURI.

Pascoal Pagliuso
University of Campinas

Date submitted: 14 Nov 2014 Electronic form version 1.4