Strain control of oxygen stoichiometry in epitaxial perovskites

HO NYUNG LEE, TRICIA MEYER, JONATHAN PETRIE, SHINBUHM LEE, JOHN NICHOLS, Oak Ridge National Laboratory, S.S. AMBROSE SEO, University of Kentucky, JOHN FREELAND, Argonne National Laboratory — Many physical properties of transition metal oxides (TMOs) are critically dependent upon the oxidation state of transition metals. Thus, a precise control of oxygen stoichiometry is critical to unambiguously understand many intriguing properties and functionalities. Based on a recent discovery of TMO-based oxygen sponges that can shed or absorb oxygen at highly reduced temperatures as low as 200 °C [Jeen et al., Nature Mater. 12, 1057 (2013) and Choi et al., Phys. Rev. Lett. 111, 097401 (2013)], we have explored various complex oxide materials to control the oxygen stoichiometry and, thereby, the critical physical properties. The latter include superconductivity in doped La$_2$CuO$_4$, metal-insulator transition in VO$_2$, and electronic and ionic conductivity as well as magnetism in SrCoO$_{3-d}$. In particular, by tuning strain systematically via lattice mismatching, we found that the epitaxial strain is a great tool to create functional defects that are critical in discovering new functionalities and/or improving the performance of materials especially for electronic and ionic conduction in complex oxides.

1The work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.