Abstract Submitted for the MAR15 Meeting of The American Physical Society

Evidence for surface-generated photocurrent in $(Bi,Sb)_2Se_3$ and (Bi,Sb)₂Te₃ thin films¹ YU PAN, ANTHONY RICHARDELLA, BING YAO, JOON SUE LEE, THOMAS FLANAGAN, ABHINAV KANDALA, NITIN SAMARTH, the Pennsylvania State University, ANDREW YEATS, PETER MINTUN, DAVID AWSCHALOM, University of Chicago — Illumination with circularly polarized light is known produce a helicity-dependent photocurrent in topological insulators such as Bi₂Se₃ [e.g. Nature Nanotech. 7, 96 (2012)]. However, the exact origin of this effect is still unclear since it is observed with photons well above the bulk band gap. We report measurements of the polarization-dependent photo current in a series of $(Bi,Sb)_2Se_3$ thin films with different carrier concentrations and find that the photocurrent is enhanced as we increase the population of the surface states. This finding is supported by a study of helicity-dependent photocurrents in back-gated $(Bi,Sb)_2$ Te₃ thin films, where the chemical potential is varied electrostatically. By illuminating our samples at different wavelengths, we show that the helicity-dependent photocurrent is enhanced when the photon energy approaches the energy difference between the lowest and first excited (unoccupied) topological surface states. This leads us to attribute the helicity-dependent photocurrent in topological insulators to optical excitations between these two spin-textured surface states. We will also discuss experiments imaging the spatial variation of these helicity-dependent photocurrents.

¹This work is supported by ONR.

Yu Pan the Pennsylvania State University

Date submitted: 14 Nov 2014

Electronic form version 1.4