How Hot Precursor Modify Island Nucleation: A Rate-Equation Model

JOSUE MORALES-CIFUENTES, T.L. EINSTEIN, Univ of Maryland-College Park, ALBERTO PIMPINELLI, Rice Quantum Institute — We describe the analysis, based on rate equations, of the hot precursor model mentioned in the previous talk. Two key parameters are the competing times of ballistic monomers decaying into thermalized monomers vs. being captured by an island, which naturally define a “thermalization” scale for the system. We interpret the energies and dimensionless parameters used in the model, and provide both an implicit analytic solution and a convenient asymptotic approximation. Further analysis reveals novel scaling regimes and nonmonotonic crossovers between them. To test our model, we applied it to experiments on parahexaphenyl (6P) on sputtered mica. With the resulting parameters, the curves derived from our analytic treatment account very well for the data at the 4 different temperatures. The fit shows that the high-flux regime corresponds not to ALA (attachment-limited aggregation) or HMA (hot monomer aggregation) but rather to an intermediate scaling regime related to DLA (diffusion-limited aggregation). We hope this work stimulates further experimental investigations.

1Work at UMD supported by NSF CHE 13-05892
2J.R. Morales-Cifuentes, T.L. Einstein, & A. Pimpinelli, PRL, in press