Thermodynamically Consistent Coarse-Graining of Polymers

MARINA GUENZA, University of Oregon

Structural and dynamical properties of macromolecular liquids, melts and mixtures, bridge an extensive range of length- and time-scales. For these systems, the computational limitations of the atomistic description prevent the study of the properties of interest and coarse-grained models remain the only viable approach. In coarse-grained models, structural and thermodynamic consistency across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. This talk presents a coarse-graining approach that conserves structural and thermodynamic quantities independent of the extent of coarse-graining, and describes a model for the reconstruction of the dynamics measured in mesoscale simulations of the coarse-grained system. Some of the general challenges of preserving structural and thermodynamic consistency in coarse-grained models are discussed together with the conditions by which the problem is lessened.

1This material is based upon work partially supported by the National Science Foundation under Grant No. CHE-1362500.