Effects of Thermal and Quantum Fluctuations on Dipole-moment distribution of H_2O molecules in ice I_h1 PEDRO MOREIRA, UFSCar, MAURICE DE KONING, Unicamp — Molecular dipole moments are the fundamental entities that underpin the dielectric behavior of molecular materials. Here, we discuss the molecular-dipole distributions of water molecules in ice I_h, considering the roles of proton-disorder, as well as the effects of thermal and quantum fluctuations. For this purpose we employ \textit{ab initio} Born-Oppenheimer and Path-Integral Molecular Dynamics simulations and compute molecular dipole moments using maximally-localized Wannier functions. We discuss trends in the dipole-moment distributions as a function of temperature.

1P.A.F.P.M. and M.K. acknowledge financial support from the Brazilian agencies Fapesp, Capes, and CNPq. All calculations were performed at CCJDR, IFGW, Unicamp.