Abstract Submitted
for the MAR15 Meeting of
The American Physical Society

Semiconducting Behavior, Schottky Barriers and Field Effect Transistors in Ultrathin Rhenium DiSulfide

CHIRS CORBET, CONNOR MCCLELLAN, AMRITESH RAI, SUSHANT SONDE, EMANUEL TUTUC, SAR-JAY K. BANERJEE, The University of Texas at Austin — We report the fabrication, characterization, and device characteristics of exfoliated dual-gated ReS$_2$ Field Effect Transistors (FETs). All devices were created on few-layer crystals isolated using micromechanical exfoliation of source material grown by molecular beam epitaxy. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy found the composition of the source material to be 34% Re and 66% S. A combination of atomic force microscopy, optical microscopy, and photoluminescence (PL) measurements were used to estimate the number of ReS$_2$ layers (2-7) in all fabricated devices. Source and drain contacts were created using a combination of electron beam lithography and e-beam evaporation of 10 nm Cr / 40 nm Au. The ReS$_2$ FETs showed n-type behavior with an on-off ratio of $10^5$ and a maximum field-effect mobility of 16 cm$^2$V$^{-1}$s$^{-1}$ at room temperature. The contact resistance was determined using the transfer length method and was found to be gate bias dependent ranging from 175 kΩ$\cdot$µm to 5 kΩ$\cdot$µm. Additionally, the contact resistance showed an exponential dependence on back-gate voltage, indicating Schottky barriers at the source and drain contacts. Dual-gated FETs were fabricated with an e-beam-evaporated alumina gate dielectric and a Cr/Au top-gate. The dual-gated FETs demonstrated current saturation and voltage gain with a subthreshold swing of 148 mV/decade.

$^1$NRI SWAN Center and the ARL STTR program