A fast real time time-dependent density functional theory simulation method1 LIN-WANG WANG, Lawrence Berkeley National Laboratory, ZHI WANG, Lawrence Berkeley National Laboratory, Berkeley; Institute of Semiconductors, Chinese Academy of Sciences, SHU-SHENG LI, Institute of Semiconductors, Chinese Academy of Sciences — We have developed an efficient real-time time-dependent density functional theory (TDDFT) method that can increase the effective time step from ≈ 1 attosecond in traditional methods to 0.1–0.5 femtosecond. Our algorithm, which carries out the non-adiabatic molecular dynamics TDDFT simulations, can have comparable speed to the Born-Oppenheimer (BO) ab initio molecular dynamics (MD). As an application, we simulated the process of an energetic Cl particle colliding onto a monolayer of MoSe\textsubscript{2}. Our simulations show a significant energy transfer from the kinetic energy of the Cl particle to the electronic energy of MoSe\textsubscript{2}, and the result of TDDFT is very different from that of BO MD simulations. This new algorithm will enable the use of real-time TD-DFT for many new simulations involving carrier dynamics and electron-phonon couplings.

1This work is supported by the Director, Office of Science, BES/MSED, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Material Theory program in LBNL. Zhi Wang is supported by the China Scholarship Council.

Lin-Wang Wang
Lawrence Berkeley National Laboratory

Date submitted: 14 Nov 2014

Electronic form version 1.4