Flexible Thermoelectric Fabrics Based on Layered Topological Insulator Bi$_2$Se$_3$ Nanoplates/Polyvinylidene Fluoride Composite

CHAOCHAO DUN, COREY HEWITT, HUIHUI HUANG, DAVID CARROLL, Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27109, U. S — We report a highly-flexible and ultrathin thermoelectric fabrics based on topological insulator (TI) Bi$_2$Se$_3$ Nanoplates/PVDF Composite, which show a room temperature Seebeck coefficient, electrical conductivity, and figure of merit ZT ~8 μV/K, 5000 S/m, 0.02, respectively. This results demonstrate that Bi$_2$Se$_3$ Nanoplates/PVDF composite exhibit favorable thermoelectric characteristics, which opens a new avenue to fabricate highly-flexible and lightweight sustainable energy sources that could be compatible with portable/wearable electronic devices. The low thermal conductivity of the composites (~ 0.42 W/(mK)) suggests the nonconducting host polymer matrix PVDF serves to bind the conducting topological insulator (TI) Bi$_2$Se$_3$ while still maintaining an adequate power factor and figure of merit. The flexible thermoelectric fabrics based on layered topological insulator Bi$_2$Se$_3$ Nanoplates/PVDF composite that with comparable thermoelectrical efficiency is only a typical example that showing the promising of the present method for further applications of 2D topological insulator like Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ At their current performance, if enough thermal energy is available, the composites could be used to provide sufficient thermoelectric power for low powered personal and portable electronics.

1This study was conducted under support from the Air Force Office of Scientific Research Grant Number FA 9550-13-1-0085.

Chaochao Dun
Center for Nanotechnology and Molecular Materials,
Department of Physics, Wake Forest University,
Winston-Salem, NC 27109, U. S

Date submitted: 14 Nov 2014