Anomalous weak ferromagnetism in $R_{1-x}Y_xB_4$ ($R =$ Sm, Gd, Tb, Dy, Ho, Er) B.Y. KANG, MYUNGSUK SONG, B.K. CHO, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Korea, J.Y. KIM, Research Institute of Industrial Science & Technology, Korea — Since the report of magnetic properties of rare earth tetraborides, RB_4 ($R =$ rare-earth elements), RB_4 compounds have received a great attention over last decades because it shows various interesting magnetic ground states depending on rare-earth elements. RB_4 exhibits antiferromagnetic ordering at low temperature and is classified as the Shastry-Sutherland lattice, which is a geometrically frustrated system. In this system, the disturbance of a delicate balance can lead to new electronic and magnetic states. In this study, single crystals of $R_{1-x}Y_xB_4$ ($R =$Sm, Gd, Tb, Dy, Ho, Er), ($x =$0, 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) were synthesized using the high-temperature Al solution growth method. Interestingly, weak ferromagnetism was found to emerge at the Néel temperature for the Y-doped single crystals of $R_{1-x}Y_xB_4$. The magnitude of spontaneous magnetic moment was found to be correlated with the Y substitution ratio, which have maximum value at about 30% of Y-concentration. The weak ferromagnetism reveals also a strong magnetic anisotropy depending on rare-earth elements. The observed data indicate that the weak ferromagnetism is not due to an individual atomic effect but a systematic bulk effect. The exotic antiferromagnetic properties will be discussed in detail in terms of yttrium substitution and magnetic and geometrical structures.

Boyoum Kang
School of Materials Science and Engineering,
Gwangju Institute of Science and Technology (GIST), Korea

Date submitted: 14 Nov 2014

Electronic form version 1.4