Abstract Submitted for the MAR15 Meeting of The American Physical Society

Magnetic and electrical properties on possible room temperature hybrid multiferroic BaTiO₃/La_{2/3}Sr_{1/3}MnO₃¹ JOHN EDWARD ORDONEZ, MARÍA ELENA GÓMEZ, WILSON LOPERA MUÑOZ, Universidad del Valle, Cali, Colombia, PEDRO ANTONIO PRIETO, Center of Excellence on Novel Materials - CENM, Cali, Colombia, THIN FILM GROUP TEAM, CENTER OF EX-CELLENCE ON NOVEL MATERIALS - CENM, CALI, COLOMBIA TEAM — We addressed to deposit the ferromagnetic phase of the La_{1-x}Sr_xMnO₃ and the ferroelectric BaTiO₃ for possible hybrid multiferroic heterostructure. We have optimized the growth parameters for depositing BaTiO₃(BTO) / La_{2/3}Ca_{1/3}MnO₃(LCMO) / (001) SrTiO₃ by sputtering RF and DC, respectively, in pure oxygen atmosphere and a substrate temperature of 830°C. Keeping fixed the magnetic layer thickness $(t_{LSMO} = 40 \text{ nm})$ and varying the thickness of the ferroelectric layer $(t_{BTO} = 20,$ 40, 80, 100 nm). We want to point out the influence of the thicknesses ratio (t_{BTO}/t_{LSMO}) on electrical and magnetic properties. From x-ray diffraction (XRD) analysis, we found the bragg peaks for LSMO maintain its position but BTO peak shift to lower Bragg angle indicating a strained BTO film. Magnetization and polarization measurements indicate a possible multiferroic behavior in the bilayers. Hysteresis loop measurements of bilayers show ferromagnetic behavior.

¹Authors thank Instituto de Nanociencia de Aragón, Zaragoza, Spain. Work partially supported by COLCIENCIAS-UNIVALLE Project 110656933104 contract No.2013-0002, CI 7917 and CI 7978.

Maria Elena Gomez Universidad del Valle, Cali, Colombia

Date submitted: 14 Nov 2014 Electronic form version 1.4