Passivation of Exfoliated Black Phosphorus Transistors Against Ambient Degradation

SPENCER WELLS, JOSHUA WOOD, DEEP JARIWALA, KAN-SHENG CHEN, EUNKYUNG CHO, VINOD SANGWAN, XIAO-LONG LIU, LINCOLN LAUHON, TOBIN MARKS, MARK HERSAM, Northwestern University — Unencapsulated exfoliated black phosphorus field-effect transistors are found to rapidly degrade upon exposure to ambient conditions, causing large increases in threshold voltage after only 6 h in ambient, followed by a ~ 10³ decrease in FET on/off ratio and mobility after 48 h. Careful investigation into the cause of this degradation suggests that H₂O irreversibly reacts with unprotected, exfoliated BP to form oxidized phosphorus species, as observed by AFM, TEM, XPS, Fourier transform infrared spectroscopy, and electrostatic force microscopy. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers as opposed to hydrophilic SiO₂, implicating an edge-based intercalation of O₂ saturated H₂O in BP as the cause of degradation. Atomic layer deposited AlOₓ overlayers were found to suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ~ 10³ and mobilities of ~ 100 cm²/(Vs) for over one month in ambient, demonstrating the effective passivation of BP flakes against ambient degradation [1].


Research supported by the Materials Research Science and Engineering Center of Northwestern University (NSF DMR-1121262), the Office of Naval Research (N00014- 14-1-0669), and the Keck Foundation.

Spencer Wells
Northwestern University

Date submitted: 14 Nov 2014

Electronic form version 1.4