Abstract Submitted for the MAR15 Meeting of The American Physical Society

Pressure-dependent Raman scattering study of \operatorname{CoV}_2\operatorname{O}_4^1 TAYLOR BYRUM, SAMUEL GLEASON, Univ of Illinois - Urbana, HAIDONG ZHOU, Univ of Tennessee - Knoxville, S. LANCE COOPER, Univ of Illinois - Urbana — The AV_2O_4 ($A = \operatorname{Cd}$, Mn, Mg, Zn, Co) spinel family provides a fertile ground to explore the crossover between electron localization and itinerancy, which can be tuned with chemical (A-site substitution) and/or physical pressure. CoV_2O_4 resides closest to the predicted itinerant electron limit for the vanadium spinel family. Recent experiments have shown the existence of a critical V-V separation by inducing a metallic transition in CoV_2O_4 with a pressure of ~6 GPa.² While the structure of CoV_2O_4 has been theoretically suggested to remain cubic through the metallic transition,³ no structural measurements under pressure have been performed. Raman spectroscopy is well suited to address this issue, as it is sensitive to even subtle structural changes. In this presentation, I present a pressure-dependent Raman scattering study of CoV_2O_4 to elucidate the role the structure plays in the metallic transition.

¹Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award DE-FG02-07ER46453. T. Byrum was partially supported by the NSF Graduate Research Fellowship Program under Grant Number DGE-1144245.

²A. Kismarahardja, et al., Phys. Rev. Lett. **106**, 056602 (2011).

³R. Kaur, et al., J. Phys.: Condens. Matter **26**, 045505 (2014).

Taylor Byrum Univ of Illinois - Urbana

Date submitted: 14 Nov 2014

Electronic form version 1.4