Neutron and X-ray studies in suppressing orbital order in FeV\textsubscript{2}O\textsubscript{4} with Cr doping.1 DALMAU REIG-I-PLESSIS, ZHANGSU WEN, ALEXANDER THALER, U. of Illinois, VASILE O. GARLEA, Oak Ridge National Lab, HAIDONG ZHOU, U. of Tennessee, JACOB RUFF, Cornell U., GREGORY MACDOUGALL, U. of Illinois — FeV\textsubscript{2}O\textsubscript{4} is a spinel compound with an orbitally active V3+ cation on a frustrated pyrochlore sublattice and Jahn-Teller active Fe3+ on a diamond sublattice. Previous studies show that this material has three structural and two magnetic transitions, and that orbital order leads to coupling between the spin and lattice degrees-of-freedom. The opposite end of the doping series is the multiferroic, FeCr\textsubscript{2}O\textsubscript{4}, which has spin, but no orbital degree of freedom on the Cr3+ and only two structural transitions. Although both materials show a higher temperature collinear ferrimagnetic state and a non-collinear phase at lower temperature, the physics must be different since the canting transition in FeV\textsubscript{2}O\textsubscript{4} is associated with the orbital order at the lowest structural transition. In this talk, I will present the results of synchrotron X-ray and neutron powder diffraction studies of the structural and magnetic transitions in the doping series FeV\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{4}. Specifically, I will comment on the doping-temperature phase diagram we extract from these measurements, and the region of co-existence between distinct non-collinear spin orders which exist at finite doping.

1This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DE-FG02-07ER46453.

Dalmau Reig-i-Plessis
U. of Illinois

Date submitted: 14 Nov 2014

Electronic form version 1.4