Dispersive qubit measurement using an integrated on-chip parametric amplifier

A. EDDINS, D.M. TOYLI, E.M. LEVENSON-FALK, QNL, University of California, Berkeley, B.A. LEVITAN, S. KHAN, A.A. CLERK, Department of Physics, McGill University, I. SIDDIQI, QNL, University of California, Berkeley — Superconducting parametric amplifiers (paramps) enable readout of superconducting qubits with unparalleled speed and efficiency. A variety of amplifier designs have been successfully used for readout; however, the most widely used devices require additional microwave components between qubit and paramp, limiting measurement efficiency and scalability. Our work aims to integrate qubit and amplifier on-chip, exploiting two-mode operation of the paramp to minimize measurement backaction on the qubit. To this end, we have developed a flux-pumped, high dynamic range amplifier compatible with qubit integration, and characterized the combined qubit-paramp circuit. We will discuss device design considerations and fabrication, studies of measurement-induced qubit dephasing in the presence of amplification, and prospects for enhanced weak, continuous measurements as well as strong, projective readout.

1This work was supported by funding from the Army Research Office.