Dimensional dependence of mobility correlations and dynamic heterogeneity in two-dimensional and three-dimensional glass forming fluids

ELIJAH FLENNER, GRZEGORZ SZAMEL, Colorado State Univ — We examine mobility correlations and heterogeneous dynamics in simulations of glass-forming two-dimensional and three-dimensional binary Lennard-Jones fluids. We compare the relationships between the dynamic correlation length ξ_4, the dynamics susceptibility χ_4, and the alpha-relaxation time τ_α by analyzing four-point structure factors $S_4(q;t)$ that are designed to investigate heterogeneous dynamics. We find that the relationships between ξ_4, χ_4, and τ_α depend strongly on dimension. Specifically, in two dimensions these relationships depend on whether the underlying dynamics is Newtonian or Brownian, but there is no dynamics dependence in three dimensions. Furthermore, in systems undergoing Newtonian dynamics ξ_4 grows much faster with τ_α in two-dimensions than three-dimensions. Therefore, we demonstrate that dynamic heterogeneities have different properties in two and three dimensional glass forming fluids.

Supported by NSF