Abstract Submitted for the MAR15 Meeting of The American Physical Society

3D Multimode Cavity QED RAVI NAIK, DAVID C. MCKAY, DAVID I. SCHUSTER, Physics Department and James Franck Institute, University of Chicago — Scalable quantum computing architectures require many long-lived and highly coherent, yet easily addressable quantum states. Photonic qubits in 3D superconducting microwave cavities are a promising approach because they are highly insensitive to decoherence and single photon lifetimes exceeding 10 ms have been demonstrated¹. However, the plurality of current 3D cavity devices are engineered to address single photon modes. In this talk, we introduce our implementation of a multimode 3D cavity that can store greater than 20 distinct, long-lived photon modes. To perform single- and two-qubit gates between photons, each of the modes are coupled to a single flux-tunable superconducting transmon qubit. We will discuss our preliminary results towards a controlled phase gate between any pair of photons modes. This multimode circuit QED architecture may also be used as a many-body bosonic system for quantum simulation, to study multimode quantum optics, and for quantum memories as part of a larger quantum network.

¹M. Reagor, Appl. Phys. Lett. **102**, 192604 (2013)

Ravi Naik Physics Department and James Franck Institute, University of Chicago

Date submitted: 14 Nov 2014

Electronic form version 1.4