Abstract Submitted for the MAR15 Meeting of The American Physical Society

TransportPropertiesofDual-Gated Bilayer Graphene/Hexagonal Boron Nitride Moiré Superlat-
tices BIN CHENG, PENG WANG, CHENG PAN, TENGFEI MIAO, YONG WU,
CHUN NING LAU, MARC BOCKRATH, Univ of California - Riverside — Moiré
superlattices of monolayer and bilayer graphene and hexagonal boron nitride (hBN)
show Hofstadter's butterfly physics under an applied magnetic field [1-3]. However,
such bilayer graphene systems on boron nitride with both back and top gates have
not been studied yet, where the properties of the fractal Hofstadter spectrum are
potentially tunable by varying the perpendicular electric field applied to the bilayer
system. Using layer stacking and edge contacts [4] we fabricate such devices. We will
report our latest data from these encapsulated hBN/aligned bilayer-graphene/hBN
devices.

[1] P. A. Ponomarenko et al., Nature 497, 594-597 (2013).

[2] C. R. Dean, et al., Nature 497, 598-602(2013).

[3] B. Hunt, et al., Science 340, 1427(2013).

[4] L. Wang. et al., Science 342, 6158(2014)

Bin Cheng Univ of California - Riverside

Date submitted: 14 Nov 2014

Electronic form version 1.4