The Evolution of Carbon Burning Flames Inside Super-Asymptotic Giant Branch Stars

CARL FIELDS, ROBERT FARMER, FRANCIS TIMMES, Arizona State University, SPIDER COLLABORATION — We explore how carbon burning impacts the bifurcation region separating stars whose final fate is a massive white dwarf from stars whose final fate is a massive star supernova. A dense grid of models with initial mass (M_{ini}) from 6.0\,M_\odot to 11.0\,M_\odot are evolved from pre main-sequence to the end of nuclear burning using the open-source toolkit, Modules for Experiments in Stellar Astrophysics (MESA). For stars between 7.0\,M_\odot ≤ M_{ini} ≤ 9.0\,M_\odot, energy losses at the center of the core due to neutrino cooling causes a temperature inversion resulting in off-center ignition. First ignition occurs where the minimum temperature of 7×10^8 K, and a density (ρ_{crit}) of 2×10^6 g/cm3 is met. We conclude that for stars within this range, the location of first ignition decreases as a function of initial mass. Moreover, we show that there exist a unique ignition density of 2×10^6 g/cm3.

Carl Fields
Arizona State University

Date submitted: 14 Nov 2014

Electronic form version 1.4