Abstract Submitted for the MAR15 Meeting of The American Physical Society

A comprehensive study of chemical substitution effects on superconductivity in LaPt4Ge12¹ KEVIN HUANG², DUYGU YAZICI, BENJAMIN WHITE, ALEXANDER BREINDEL, NAVEEN POUSE, Physics Department, UC San Diego, LEI SHU, Physics Department, Fudan University, BRIAN MAPLE, Physics Department, UC San Diego — The compound $PrPt_4Ge_{12}$ has attracted significant attention following observations of signatures of unconventional superconductivity such as time reversal symmetry breaking from μ SR measurements. In contrast, $LaPt_4Ge_{12}$ is a conventional BCS-type superconductor, interestingly, with the same superconducting transition temperature, T_c , as PrPt₄Ge₁₂ (T_c = 8 K). To elucidate the properties of superconductivity in $PrPt_4Ge_{12}$, the system $La_{1-x}Ce_xPt_4Ge_{12}$ was investigated and the results are compared to our previous work on $Pr_{1-x}Ce_xPt_4Ge_{12}$. Measurements of magnetic susceptibility, electrical resistivity, and specific heat were performed demonstrating that T_c is suppressed more rapidly in $La_{1-x}Ce_xPt_4Ge_{12}$ than in $Pr_{1-x}Ce_xPt_4Ge_{12}$. Specific heat measurements reveal a crossover in the temperature dependence of the superconducting state of $La_{1-x}Ce_xPt_4Ge_{12}$, changing from a power law for x=0 to an exponential for the Ce-substituted samples, possible evidence of a transition from a multiband to a single-band superconducting energy gap. Th substitution for La did not produce the crossover.

¹Research at UC San Diego was supported by the US National Science Foundation under Grant No. DMR 0802478 and the US Department of Energy under Grant No. DE-FG02-04-ER46105.

²Present location: Fudan University

Kevin Huang Physics Department, UC San Diego

Date submitted: 14 Nov 2014

Electronic form version 1.4