Magnetic Anisotropy in UMn$_2$Ge$_2$1 MORGANN BERG, University of Texas at Austin, ALEX DE LOZANNE, RYAN BAUMBACH, JEEHOON KIM, ERIC BAUER, JOE THOMPSON, FILIP RONNING, Los Alamos National Laboratory — UMn$_2$Ge$_2$, a permanent magnet, is a ternary intermetallic compound with a tetragonal crystal structure of type ThCr$_2$Si$_2$ and with space group I4/mmm. Local U and Mn moments in UMn$_2$Ge$_2$ order on their respective sublattices at temperatures near 100 and 380 K, respectively. Previous x-ray diffraction, Kerr rotation angle, and SQUID magnetometry data support the commonly accepted notion that U moments order at low temperature and align Mn moments along the c-axis, introducing anisotropy. Previous results obtained using a multi-mode atomic force microscope in magnetic force microscopy (MFM) mode indeed confirmed that UMn$_2$Ge$_2$ displays uniaxial anisotropy with an easy axis coinciding with the c-axis of the material. However, the branching domains in UMn$_2$Ge$_2$ consistent with uniaxial anisotropy were observed all the way up to room temperature by MFM. This indicates that the effect of uranium moments on the magnetic microstructure of UMn$_2$Ge$_2$ is not limited to low temperatures near the ordering temperature of the uranium sublattice. We further investigate closure domains in the surface of UMn$_2$Ge$_2$ and report on characteristics and signatures of anisotropy revealed by the orientation and periodic structures of closure domains.

1Supported by NSF grant DMR-0810119