Self-assembly of graded refractive index in squids: a patchy colloid explanation

JING CAI, PAUL HEINEY, ALISON SWEENEY, Univ of Pennsylvania — Squids have a spherical eye lens that achieves both acute and highly sensitive vision underwater. The spherical shape necessitates a graded refractive index (GRIN) to form sharp images. This index variation comes from a gradient in protein packing fraction ranging from approximately 0.05 to 1.0. This presents a materials conundrum: optical transparency requires that the protein density fluctuation at length scales > 100 nm is minimized throughout the lens, something that is difficult to achieve with simple spherical particles. Here we show that squids have accomplished this by evolving a suite of proteins that can act as patchy colloids with specific low valence (M=2 or M=3). We conducted small x-ray scattering (SAXS) at different radial positions of the lens, and performed a Monte Carlo simulation to estimate structures consistent with the SAXS result. This analysis suggests that lens proteins may form a density gradient gel structure, with density mediated by a tightly controlled protein coordination number in each region. Patchy colloid theory may therefore explain both the GRIN and the transparency evolved in the lens.

Jing Cai
Univ of Pennsylvania

Date submitted: 14 Nov 2014