Abstract Submitted
for the MAR15 Meeting of
The American Physical Society

Growth of β-Tungsten Films Towards a Giant Spin Hall Effect Logic Device

AVYAYA JAYANTHINARASIMHAM, MANASA MEDIKONDA, AKITOMO MATSUBAYASHI, State University of New York, Albany, PRASANNA KHARE, HYUNCHER CHONG, RICHARD MATYI, ALAIN DIEBOLD, VINCENT LABELLA, SUNY, Polytechnic Institute — Spin-orbit coupling in metastable β-W generates spin transfer torques strong enough to flip magnetic moment of an adjacent magnetic layer. In a MTJ stack these torques can be used to switch between high and low resistive states. This technique can be used in designing efficient magnetic memory and non-volatile spin logic devices. Deposition conditions selective to β-W need to be understood for the large scale fabrication of such devices. The transition from β to α phase of Tungsten is strongly governed by thickness of W layer, base pressure and oxygen availability for example, above 5 nm β film relaxes and forms an α phase. Resistivity measurements as well as x-ray photoelectron spectroscopy and x-ray diffraction and reflectivity analysis are performed to determine the phase and thickness of tungsten films. We show that β phase is influenced by ultrathin thermal oxide of Si layer and the amount of oxygen flow during the growth. These results demonstrate a reliable technique to fabricate β W film up to 20 nm on bare Si and silicon dioxide, while providing insight to growing it anywhere in the device stack.

Avyaya Jayanthinarasimham
State University of New York, Albany

Date submitted: 14 Nov 2014

Electronic form version 1.4