Predictive DFT+U Methods for Small Molecule Binding in MOF-74

GREGORY MANN, Dept. of Chemistry, UC Berkeley, KYUHO LEE, Department of Chemical & Biomolecular Engineering, UC Berkeley; Molecular Foundry, Lawrence Berkeley National Lab, MATTEO COCOCCHIONI, Institute of Materials, École polytechnique fédérale de Lausanne, BEREND SMIT, Departments of Chemistry and Chemical & Biomolecular Engineering, UC Berkeley, JEFFREY NEATON, Molecular Foundry, Lawrence Berkeley National Lab; Dept. of Physics, UC Berkeley — In order to use density functional theory (DFT) to reliably treat small molecule binding at open metal sites in metal-organic frameworks (MOFs), electron correlation effects associated with the localized d-states present at the metal centers must be accounted for. Incorporation of a Hubbard U-like term can be an approximate but computationally efficient means, yielding excellent agreement with experiment provided an appropriate value for the parameter U is chosen. To predict adsorption energetics for as-yet unsynthesized MOFs, we would need to select U using a systematic, physically motivated approach rather than the ad hoc methods typically employed. Here, we use an ab initio linear response approach to calculate U. We show that U values determined with this method reproduce previous results for the binding of carbon dioxide in Co-MOF-74 and Cu-MOF-74, and we discuss the method’s application to other 3d metals in the MOF-74 framework; our preliminary results suggest that a wide range of U’s above a critical value will produce accurate binding energies. Finally, we present U values calculated for Co2+ ions in other systems, probing the environment dependence of this parameter. This work supported by DOE, and computational resources provided by NERSC.

Gregory Mann
Dept. of Chemistry, UC Berkeley

Date submitted: 14 Nov 2014

Electronic form version 1.4