Femtosecond Heterodyne Transient Grating Studies of Nonradiative Decay in β-Carotene and Peridinin: Contributions of Dark Intermediates and Double Quantum Coherences SOUMEN GHOSH, JEROME ROSCIOLI, Michigan State Univ, HARRY FRANK, University of Connecticut, WARREN BECK, Michigan State Univ — Femtosecond transient grating spectroscopy with optical heterodyne detection was employed to characterize the ultrafast events in the nonradiative decay of β-carotene and peridinin in solution from the S_2 state. The contribution of double-quantum coherences to the time evolution of the third order signal was probed by scanning the interpulse delay between the first two pulses in the transient grating or stimulated photon-echo sequence. The results show that the double-quantum coherence pathways contribute significantly to the transient grating signal only at negative population delays, which is consistent with the requirements determined from double-sided Feynman diagrams when the third order signal is detected in the $-k_1+k_2+k_3$ direction. Response function calculations support the conclusion that the ultrafast (<20 fs) decay that contributes to the third order signal at positive population delays arises from an kinetic intermediate, which has been previously assigned to the S_x state. We suggest that this intermediate arises not from a discrete electronic state but rather from a twisted conformation of the conjugated polyene. This proposal has significant implications with respect to the energy transfer function of carotenoids in photosynthesis.

Warren Beck
Michigan State Univ

Date submitted: 14 Nov 2014
Electronic form version 1.4