Fermiology of the undoped cuprate superconductor Pr$_2$CuO$_4$
ROSS MCDONALD, Los ALamos National Laboratory, NICHOLAS BREZNAY, NITYAN NAIR, JAMES ANALYTIS, UC Berkeley, ZENGWEI ZHU, KIMBERLEY MODIC, Los ALamos National Laboratory, YOSHIHARU KROCKENBERGER, NTT Basic Research Laboratories, LANL COLLABORATION, UC BERKELEY COLLABORATION, NTT COLLABORATION — Recent advances in molecular beam epitaxy growth and preparation of cuprate thin films indicate that annealing can be employed to minimize apical oxygen defects. For Pr$_2$CuO$_4$ the resulting square planar coordinated structure exhibits a 25 K superconducting transition in the absence of doping. This calls into question whether a Mott insulating groundstate is the relevant description of the square-planar parent phase of the electron-doped cuprate superconductors. We present high field (>90 T) measurements of magnetic quantum oscillations – the first observation of it’s kind for a cuprate thin film. The oscillation frequency and effective mass are consistent with the reconstructed Fermi surface of the electron-doped cuprate Nd$_{2-\delta}$Ce$_\delta$CuO$_4$. The combination of a reconstructed bandstructure and the occurrence of metallicity at zero doping is consistent with a Slater picture of band magnetism, indicating that the “doped Mott insulator” paradigm may not apply in this system.