Bacterial Chemotaxis with a Moving Target

COREY DOMINICK, Univ of Pittsburgh — Most chemotaxis studies so far have been conducted in a quiescent fluid with a well-defined chemical gradient. Such experiments may be appropriate for studying enteric bacteria, such as *Escherichia coli*, but the environment it provides is very different from that typically encountered by marine bacteria. Herein we describe an experiment in which marine bacterium *Vibrio alginolyticus* is subject to stimulation by a small moving target. A micropipette of the tip size <1 μm is used to slowly release a chemoattractant, serine, at different concentrations. The pipette is made to move with different patterns and speeds, ranging from 0 to 100 μm/s; the latter is about twice the bacterial swimming speed. We found that if the pipette is moved slowly, with 1/4 of bacterial swimming speed, cells accumulate near the tip region but when it is moved with speed greater than 1/2 the bacterial swimming speed, cells trail behind the pipette over a large distance. The behaviors observed in *V. alginolyticus* are significantly different from *E. coli*, suggesting that the former is a better chemotaxer in a changing environment.

Corey Dominick
Univ of Pittsburgh

Date submitted: 14 Nov 2014

Electronic form version 1.4