Shear Jamming in Frictionless Particulate Media1 THIBAULT BERTRAND, COREY S. O’HERN, Yale University, R.P. BEHRINGER, Duke University, BULBUL CHAKRABORTY, Brandeis University, MARK D. SHAT-TUCK, City College of the City University of New York — We numerically study two-dimensional packings of frictionless bidisperse disks created using compressive and simple shearing protocols. To create jammed packings by compression, we start \(N \) particles from random positions and grow their diameters followed by relaxation of particle overlaps using energy minimization. These compressed packings exist over a range of packing fractions \(\phi \). As a result, during compression the system may reach a \(\phi \) above the minimum value before jamming. If this unjammed packing is then sheared by a strain \(\gamma \), it can jam. Using a combination of compression and shearing, we can define jamming protocols as trajectories in the \((\phi, \gamma)\) plane that yield jammed packings. In this plane, we can reach a particular point \((\phi_n, \gamma_n)\) in many ways. We will focus on two protocols: (1) shearing to \(\gamma_n \) at \(\phi = 0 \) followed by compression to \(\phi_n \) at \(\gamma = \text{gamma}_n \) and (2) compression to \(\phi_n \) at \(\gamma = 0 \) followed by shearing to \(\gamma_n \) at \(\phi = \phi_n \). For protocol 1, we find that the probability of finding a jammed packing at \(\phi \) and \(\gamma \), \(P(\phi, \gamma) = Q(\phi) \) is independent of \(\gamma \). For protocol 2, we use a simple theory to deduce \(P(\phi, \gamma) \) from \(Q(\phi) \).

1W. M. Keck Foundation Science and Engineering Grant

Thibault Bertrand
Yale University

Date submitted: 14 Nov 2014
Electronic form version 1.4