Physical Adsorption of noble gases on a monolayer graphene sheet using Grand Canonical Monte Carlo Simulation

SIDI MAIGA, Student, SILVINA GATICA, Howard University — Adsorption is defined as the attachment of atoms, or molecules of a gas, liquid or dissolved solid onto a surface, creating a film or monolayer of material onto the adsorbing surface. Using the Method of Grand Canonical Monte Carlo we computed the adsorption of Ar, Kr, and Xe on a monolayer graphene sheet, at various temperatures for each gas. For each temperature, we compute the adsorption isotherm, Energy gas-surface and Energy gas-gas, radial distribution function and structure function. We constructed the phase diagrams for 2D Ar and Kr on graphene.

Partial funding for this research was provided by the Partnership for Reduced Dimensional Materials (PRDM), an NSF Partnership for Research and Education in Materials (PREM) (Award Number DMR-1205608) and by the CIQM, NSF Grant No. DMR-1231319

Sidi Maiga
Student

Date submitted: 14 Nov 2014